在新能源汽车充电桩建设领域,随着新能源汽车的快速普及,充电桩大规模发展将导致充电谐波污染问题更为突出,对电网造成较大扰动。目前,充电桩设备基本都会标配相关的高压补偿模组来提高供电系统谐波承受能力,有条件的项目也会选择加装有源滤波装置。
对于有功功率相对稳定且不需要频繁切换高压补偿模组的客户,可以选择限流电阻的直流接触器开关电容器机械设备。 这种类型的机械和设备是相对社会和经济发展的,并且价格低廉。 由于切换次数少,因此相对使用期限足够长。
在实际的电源系统中,大多数负载是异步电动机。等效电路可以看作是电阻和电感的串联电路,电压和电流之间的相位差大,功率因数低。重庆补偿模组并联后,电容器的电流将抵消一部分电感电流,从而使电感电流减小,总电流相应减小,电压和电流之间的相位差变小,从而提高了功率因数。
在正常情况下,高压补偿模组用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,那么,这些用电设备就不能维持在额定情况下工作,补偿模组批发用电设备的端电压就要下降,从而影响用电设备的正常运行。
重庆补偿模组功率因数是电力系统的一一个重要的技术数据。功率因数是衡量电气设备效率高低的一一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。高压补偿模组提高负载功率因数,降低无功功率,提高供电设备的效率;降低网损,节约能源;增加电网传输容量,提高稳定极限
重庆高压补偿模组方式。优点:补偿区域大于高压集中补偿区域,使用用户能够获得较大的经济效益。而且投资小,通常安装在低压配电室,平时运行维护和管理方便安全。分散就地补偿方式。优点:这种方式是将电容组分别装设在各组用电设备上,高压补偿模组或安装在单独的大容器电动机处。与用电设备要同时启用,同时运行,但不能共用一套控制系统。